
Lecture 22: Message Authentication Codes from
PRF

MAC from PRF



Outline

In the previous lecture, we defined MACs and their security
and constructed them using random functions
In today’s lecture, we shall construct MACs using
pseudo-random functions

MAC from PRF



MAC using Pseudorandom Functions I

Scheme.

Secret-key Generation. Sample sk uniformly at random from
{0, 1}n/100 and provide sk to both the sender and the verifier

Tagging a message m ∈ {0, 1}n. The sender computes tag
τ = gsk(m) (evaluate using the GGM construction, where we
consider functions {0, 1}n → {0, 1}n/100 and id in {0, 1}n/100)

Verifying a message-tag pair (m̃, τ̃). Check whether τ̃ is same
as gsk(m̃) or not

MAC from PRF



MAC using Pseudorandom Functions II

Security

An adversary cannot forge if it sees t message-tag pairs, where
t = poly(n) and the adversary is computationally bounded
If an adversary can forge a signature in this case, we can
distinguish the random functions from pseudo-random
functions. Because, in the former case, forgeability was
impossible for any adversary. However, in the latter case, this
adversary makes forgeability possible. s

MAC from PRF



Subtlety I

The scheme mentioned above is secure ONLY for messages
in {0, 1}n and NOT {0, 1}∗
What does it mean?

The set {0, 1}n represents n-bit messages, and {0, 1}∗
represents arbitrary-length messages. This scheme is secure
only when an adversary sees message-tag pairs for messages
m1,m2, . . . ,mt such that all of them have identical length n.
Moreover, the adversary has to forge by producing (m′, τ ′) pair
such that the length of the message m′ is exactly n.

The scheme is not secure if the adversary can produce a
message of a different length. The attack is explained in the
next slide

MAC from PRF



Subtlety II

Adversarial strategy to forge a message-tag pair of different
lengths.

Suppose the adversary has seen a message-tag pair (m, τ)
such that τ = Fsk(m)

The adversary creates m′ = m0 (i.e., the message m
concatenated at the end with 0). The adversary computes τ ′

as the first half of G (τ).

Verify that Fsk(m
′) = τ ′

In fact, the adversary can successfully tag any m′ such that m
is the prefix of m′

MAC from PRF



Lesson Learned (Very Important)

The sender and the verifier should establish one secret key sk
for EACH length of the message they want to sign. For
example

They establish a secret-key sk ∈ {0, 1}k for 1024-bit messages
and use Fsk(m) as the tag for 1024-bit messages m
If they want to tag 2048-bit messages, then they establish a
new secret-key sk′ ∈ {0, 1}k and use Fsk′(m) as the tag for
2048-bit messages m
The verifier should only check the validity of the tags
corresponding to 2048-bit messages using the secret key
associated with message length 2048 (in our case, it is the
secret key sk′)

MAC from PRF



Food for thought

Suppose we want to construct a MAC so that if t-parties
among a set of n-parties decide to endorse a message m, they
can add a tag that the verifier can verify. How to construct
such a scheme?

MAC from PRF


